Edexcel Maths C3

Topic Questions from Papers

Algebra

2. Expre	ess

$$\frac{2x^2 + 3x}{(2x+3)(x-2)} - \frac{6}{x^2 - x - 2}$$

as a single fraction in its simplest for	orm.
	(7)

1	(a)	Simplify	$3x^2 - x - 2$
1.	(a)	Simping	$-\frac{1}{x^2-1}$.

(3)

(b) Hence, or otherwise, express $\frac{3x^2 - x - 2}{x^2 - 1} - \frac{1}{x(x+1)}$ as a single fraction in its simplest

form.	
	(3)
	(3)

2.

$$f(x) = 1 - \frac{3}{x+2} + \frac{3}{(x+2)^2}, \ x \neq -2.$$

(a) Show that $f(x) = \frac{x^2 + x + 1}{(x+2)^2}, x \neq -2.$

(4)

(b) Show that $x^2 + x + 1 > 0$ for all values of x.

(3)

(c) Show that f(x) > 0 for all values of $x, x \ne -2$.

(1)

2.

$$f(x) = \frac{2x+3}{x+2} - \frac{9+2x}{2x^2+3x-2}, \quad x > \frac{1}{2}.$$

(a) Show that $f(x) = \frac{4x - 6}{2x - 1}$.

(7)

(b) Hence, or otherwise, find f'(x) in its simplest form.

(3)

4	α .	.1
	Given	thot

$$\frac{2x^4 - 3x^2 + x + 1}{(x^2 - 1)} \equiv (ax^2 + bx + c) + \frac{dx + e}{(x^2 - 1)},$$

es of the constants a		

2.

$$f(x) = \frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3}$$

(a) Express f(x) as a single fraction in its simplest form.

(4)

(b) Hence show that $f'(x) = \frac{2}{(x-3)^2}$

(3)

(3)

1. Express	5

$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$	
as a single fraction in its simplest form.	(4)

3. (a) Express $5\cos x - 3\sin x$ in the form $R\cos(x + \alpha)$, where $R > 0$ and $0 < \alpha < 1$	$\frac{1}{2}\pi$. (4)
(b) Hence, or otherwise, solve the equation	
$5\cos x - 3\sin x = 4$	
for $0 \leqslant x < 2\pi$, giving your answers to 2 decimal places.	(5)

o. (a) Simplify fully	8.	(a)	Simplify	fully
-----------------------	----	-----	----------	-------

$$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15} \tag{3}$$

Given that

	$\ln(2x^2 + 9x - 5) = 1 + \ln(2x^2 + 9x - 5)$	$(x^2 + 2x - 15)$, x	$c \neq -5$,	
(b) find <i>x</i> in terms	of e.			
				(4)

2. (a) Express

$$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$$

as a single fraction in its simplest form.

(4)

Given that

$$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, \quad x > 1,$$

(b) show that

$$f(x) = \frac{3}{2x - 1}$$

(2)

(c) Hence differentiate f(x) and find f'(2).

(3)

	Leave
Question 2 continued	blank

Leave

	$\frac{2(3x+2)}{9x^2-4} - \frac{2}{3x+1}$	
as a single fraction i		
_		(4)

Leave
blank

1. Exp	ess
---------------	-----

3x + 5		2	
${x^2 + x - 12}$	_	$\overline{x-3}$	3

as	a	single	fraction	in	its	simp	lest	form.
----	---	--------	----------	----	-----	------	------	-------

-	4
	4 1

(4)

1.	Given	that

$$\frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2$$

find the values of the constants a , b , c , d and e .					

Core Mathematics C3

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx
$$k \sec^2 kx$$

sec x $\sec x \tan x$
cot x $-\csc^2 x$
cosec x $-\csc x \cot x$

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$